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Authenticated Key Exchange (AKE)

 Correctness.

𝑘𝑖 = 𝑘𝑗 .

 Security.

• Indistinguishability.

the session key is pseudorandom.

• Authentication.

- Explicit authentication: detects active 
attacks during the execution of AKE.

- Implicit authentication: detects active 
attacks in the later communication.

A pass: one message sent from 𝑃𝑖 to 𝑃𝑗 (or 𝑃𝑗 to 𝑃𝑖).
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Tight Security
Security of a cryptographic Scheme based on a hard Problem.

Security loss factor: 𝐿 =
𝜖

𝜖′

Tight Security: constant 𝐿 = 𝑂(1)

Problem Scheme

PPT adversary 𝒜 successfully attacks Scheme
(with probability 𝜖)

PPT algorithm ℬ successfully solves Problem
(with probability 𝜖′)

ℬ 𝒜
construct ℬ

Advantages:
• smaller elements
• universal key-length recommendations



Tight Security for AKE

PPT adversary 𝒜 successfully attacks AKE
(with probability 𝜖)

PPT algorithm ℬ successfully solves Problem

(with probability 𝜖′)

ℬ construct ℬ
successful attack to one target instance

Problem 𝒜

embed
User 𝑃1(ℓ protocol instances)

User 𝑃2(ℓ protocol instances)

User 𝑃𝜇(ℓ protocol instances)

...

𝝁 users

Loose Security:  loss factor at least 𝐿 = 𝑂(𝜇ℓ)
Tight Security:   constant 𝐿 = 𝑂(1)

𝜇ℓ can be as large as 𝟐𝟑𝟎~𝟐𝟓𝟎！



Related Works on Tightly Secure AKE

• [GJ18, CRYPTO]: 3-pass protocol in the RO model.

• [BHJ+15, TCC]: 3-pass protocol in the Std. model.

• [CCG+19, CRYPTO]: 2-pass protocol in the RO model (security loss 𝐿 = 𝑂(𝜇)).

• [XZM20, CT-RSA]: 2-pass protocol in the RO model.

2-pass AKE scheme with explicit authentication and tight security? 

➢ Explicit authentication

➢ Implicit authentication

Advantages of explicit authentication:

detect active attacks immediately.



Security Model for AKE [GJ18]

• 𝜇: max number of users.

• ℓ: max number of executions

per user involved.

• 𝜋𝑖
𝑠: the (simulated) 𝑠-th of user 𝑃𝑖 .

Indistinguishability:

Pr 𝑏′ = 𝑏𝑖∗
𝑠∗ =

1

2
+ negl.𝒞 simulates their communication 

via 𝒜‘s send queries

(𝜋1
1, … , 𝜋𝑖

𝑠, … , 𝜋𝜇
ℓ)

𝒜𝒞

test(𝑖, 𝑠)

𝜋𝑖
𝑠 𝜋𝑗

𝑡

...

Send(𝑖, 𝑠,𝑚𝑠𝑔)

Corrupt(𝑖)

Reveal(𝑖, 𝑠)

RegisterCorrupt(𝑖, 𝑝𝑘𝑖)

session key 𝑘𝑖
𝑠

response 𝑚𝑠𝑔’

𝑃𝑖’s long-term 𝑠𝑘𝑖

𝑘𝑖
𝑠/random key

𝑖∗, 𝑠∗, 𝑏′

independent random bit 𝑏𝑖
𝑠

(𝒜’s guess of 𝑏𝑖∗
𝑠∗ for target session (𝑖∗, 𝑠∗))



Signed Diffie-Hellman Protocol

𝑔𝑎 , 𝜎1

Party 𝑃𝑖 Party 𝑃𝑗

𝑘𝑖 = 𝑔𝑎𝑏

(𝑠𝑘𝑖) (𝑠𝑘𝑗)

𝑘𝑗 = 𝑔𝑎𝑏

𝑔𝑏, 𝜎2

⇓ ⇓

𝜎1 ← SIG. Sign(𝑔𝑎)

𝜎2 ← SIG. Sign(𝑔𝑎||𝑔𝑏)



Commitment Problem in Signed DH

Consider the reduction algorithm ℬ and a specific session (𝑖, 𝑠). 

• ℬ receives a DDH challenge problem (𝑔𝑥, 𝑔𝑦, 𝑔𝑧).

• If (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) is embedded into session (𝑖, 𝑠), then it cannot be revealed.

• If not, then ℬ cannot complete the reduction if 𝒜 chooses (𝑖, 𝑠) as target.

Guess the target session (from 𝜇ℓ sessions) and embed the DDH problem into it.

⟹ loose security loss 𝐿 = 𝑂(𝜇ℓ).

• To deal with the “commitment problem”, Gjøsteen and Jager [CRYPTO 2018] added an extra hash 
commitment as the first message, resulting in a 3-pass protocol with tight security in the RO model.

Hardness of tight security for signed DH.



Commitment Problem in KEM

We need to solve the commitment problem in KEM:

• provide traditional IND-security

• answer reveal queries from 𝒜

• KEM. Gen: 𝑝𝑘 = 𝑔𝑎 , 𝑠𝑘 = 𝑎

• KEM. Encap 𝑝𝑘 : 𝐾 = 𝑔𝑎𝑏, 𝐶 = 𝑔𝑏

• KEM. Decap 𝑠𝑘, 𝐶 : 𝐾′ = 𝐶𝑠𝑘

Key Encapsulation Mechanism (KEM):

Signed DH protocol is actually a KEM + SIG construction.



Our Solution: IND-mCPAreveal secure KEM

IND-mCPAreveal security: Pr 𝒜 𝑤𝑖𝑛𝑠 =
1

2
+ negl.

IND-mCPAreveal security
experiment:

𝒜𝒞

{𝑝𝑘𝑖}

Encap(𝑖)

𝐾𝛽, 𝐶

Reveal(𝑖, 𝐶′)

𝐾′

𝑖∗, 𝐶∗, 𝛽′
𝒜 𝑤𝑖𝑛𝑠 if ∃ 𝑖∗, 𝐶∗, 𝛽 ∈ CList

add (𝑖, 𝐶, 𝛽) to CList
𝛽 ← {0,1}

add (𝑖, 𝐶′) to RList

𝐹𝑜𝑟 𝑖 ∈ 𝜇 :
𝑝𝑘𝑖 , 𝑠𝑘𝑖 ← KEM. Gen

𝐾′ ← KEM. Decap(𝑠𝑘𝑖 , 𝐶′)

(𝐾0, 𝐶) ← KEM. Encap, 𝐾1 ← $

𝑠. 𝑡. 𝑖∗, 𝐶∗ ∉ RList ∧ 𝛽′ = 𝛽

(challenge ciphertexts)



Our Solution: MU-EUF-CMAcorr secure SIG

MU-EUF-CMAcorr security: Pr 𝒜 𝑤𝑖𝑛𝑠 = negl.

MU-EUF-CMAcorr security
experiment:

𝒜𝒞

{𝑣𝑘𝑖}

Sign(𝑖,𝑚)

𝜎

Corrupt(𝑖)

𝑠𝑘𝑖

𝑖∗, 𝑚∗, 𝜎∗𝒜 𝑤𝑖𝑛𝑠 if 𝑖∗ ∉ 𝑆corr ∧ (𝑚∗, ∙ ) ∉ 𝑆𝑖∗

add (𝑚, 𝜎) to 𝑆𝑖

add (𝑖, 𝐶′) to 𝑆corr

𝐹𝑜𝑟 𝑖 ∈ 𝜇 :
𝑣𝑘𝑖 , 𝑠𝑘𝑖 ← SIG. Gen

𝜎 ← SIG. Sign(𝑠𝑘𝑖 , 𝑚)

∧ SIG. Ver 𝑣𝑘𝑖∗ , 𝑚
∗, 𝜎∗ = 1



Our Construction: KEM + SIG

⚫ With a tightly IND-mCPAreveal secure KEM, the commitment problem is solved, since all 
challenge ciphertexts can be

• either served as the final target of 𝒜.
• or revealed to 𝒜.

⚫ With a tightly MU-EUF-CMAcorr secure SIG, we can also handle the corruption queries from 
the adversary.

✓ KEM:  tightly IND-mCPAreveal security ➔ indistinguishability

✓ SIG:    tightly MU-EUF-CMAcorr security ➔ explicit authentication



Our Construction: KEM + SIG

(𝑝𝑘KEM, 𝜎1)

Party 𝑃𝑖 Party 𝑃𝑗

𝑘𝑖 = 𝐾′

(𝑠𝑘𝑖) (𝑠𝑘𝑗)

𝑝𝑘KEM, 𝑠𝑘KEM ← KEM. Gen
𝜎1 ← SIG. Sign(𝑠𝑘𝑖 , 𝑝𝑘KEM)

𝑘𝑗 = 𝐾

⇓ ⇓

(𝐶, 𝜎2)

𝐾, 𝐶 ← KEM. Encap 𝑝𝑘KEM
𝜎2 ← SIG. Sign(𝑠𝑘𝑗 , 𝑝𝑘KEM||𝐶)

𝐾′ ← KEM.Decap 𝑠𝑘KEM, 𝐶

• Corrupt: SIG is secure against adaptive corruptions.

• Reveal:   KEM is secure against adaptive reveals.

• Test: KEM is IND-secure.

Against 𝓐‘s queries (attacks):



Dealing with Replay Attacks

• A stronger security model of AKE:
If a replayed message is accepted by some user, the authentication of AKE is broken.

• We add counters to identify the freshness of messages.

✓ In this way, any replayed attacks can be detected immediately in our 2-pass AKE.

Pi Pj
msg

A

Compared with multi-pass AKE, 2-pass AKE inherently open to replay attacks.

Pi Pj

If 𝑐𝑡𝑟𝑖 ≠ 𝑐𝑡𝑟𝑗: ⊥
Else: 𝑐𝑡𝑟𝑗 ≔ 𝑐𝑡𝑟𝑖

If 𝑐𝑡𝑟𝑖 ≤ 𝑐𝑡𝑟𝑗: ⊥

(𝑝𝑘KEM, 𝑐𝑡𝑟𝑖 , 𝜎1 )𝑐𝑡𝑟𝑖 + +

(𝐶, 𝑐𝑡𝑟𝑗 , 𝜎2)



Our Generic Construction

✓ Perfect Forward Security

✓ KCI Resistance (security against key-compromise impersonation attacks)

(𝑝𝑘KEM, 𝑐𝑡𝑟𝑖 , 𝜎1)

Party 𝑃𝑖 Party 𝑃𝑗

𝑘𝑖 = 𝐾′

(𝑠𝑘𝑖) (𝑠𝑘𝑗)

𝑝𝑘KEM, 𝑠𝑘KEM ← KEM. Gen
𝑐𝑡𝑟𝑖 + +

𝜎1 ← SIG. Sign(𝑠𝑘𝑖 , 𝑝𝑘KEM||𝑐𝑡𝑟𝑖)

𝑘𝑗 = 𝐾
⇓ ⇓

(𝐶, 𝑐𝑡𝑟𝑗 , 𝜎2)

check 𝑐𝑡𝑟𝑖 > 𝑐𝑡𝑟𝑗? If yes, 𝑐𝑡𝑟𝑗 ≔ 𝑐𝑡𝑟𝑖
𝐾, 𝐶 ← KEM. Encap 𝑝𝑘KEM

𝜎2 ← SIG. Sign(𝑠𝑘𝑗 , 𝑝𝑘KEM||𝑐𝑡𝑟𝑗||𝐶)

𝐾′ ← KEM.Decap 𝑠𝑘KEM, 𝐶
check 𝑐𝑡𝑟𝑖 = 𝑐𝑡𝑟𝑗?



AKE in the RO model

We obtain the first  2-pass AKE scheme with explicit authentication and tight security in the RO model.

➢ Instantiation of KEM

• The IND-mCPAreveal security is based on the twin DH assumption (the CDH assumption).

• Tight security relies on the random self-reducibility.

• Security against reveal queries relies on the decisional oracle 2𝐷𝐻.

➢ Instantiation of SIG

• SIGDDH in [GJ18] (based on the DDH assumption).

• KEM. Gen: 𝑝𝑘 = 𝑔𝑥1 , 𝑔𝑥2 , 𝑠𝑘 = 𝑥1, 𝑥2 .

• KEM. Encap 𝑝𝑘 : 𝐾 = 𝐻 𝑝𝑘, 𝐶, 𝑔𝑥1𝑦 , 𝑔𝑥2𝑦 , 𝐶 = 𝑔𝑦

• KEM. Decap 𝑥1, 𝑥2 , 𝐶 : 𝐾′ = 𝐻 𝑝𝑘, 𝐶, 𝐶𝑥1 , 𝐶𝑥2

KEMst2DH:



AKE in the Std. model

• KEMMDDH is derived from the tightly IND-mCCA secure PKE scheme by Han et al. 
[CRYPTO 2019].

• IND-mCCA implies IND-mCPAreveal with tight reduction.

➢ Instantiation of KEM

➢ Instantiation of SIG

• SIGMDDH in [BHJ+15] (based on the MDDH assumption).

We obtain the first  2-pass AKE scheme with explicit authentication and tight security in the Std. model.



Comparison

AKE
Scheme

Comp. (I) Comp. (R) Comm. (I+R) Assumption Sec. Loss #Pass Model

[GJ18] 17 17 12+11 DDH 𝑂(1) 3 RO

AKEDDH 19 18 12+11 DDH 𝑂(1) 2 RO

[BHJ+15] 22

𝑂(𝑘2)

23

𝑂(𝑘2)

11+9

2𝑘2 + 4𝑘 + 5 + (4𝑘 + 7)

1-LIN=SXDH

𝐷𝑘-MDDH

𝑂(𝜆) 3 Std.

AKEMDDH
37

𝑂(𝑘3)

22

𝑂(𝑘3)

7+8

𝑘2 + 5𝑘 + 1 + (4𝑘 + 4)

1-LIN=SXDH

𝐷𝑘-MDDH

𝑂(𝜆) 2 Std.



Conclusion

Thank you!
Questions?

tightly secure
AKE

stronger security model
(covers replay attacks)

RO:  KEMst2DH

Std.: KEMMDDH

RO:  SIGDDH

Std.: SIGMDDH

instantiations

• 2-pass
• explicit authentication
• tight security

tightly IND-mCPAreveal

KEM

tightly EUF-CMAcorr

SIG
AKEMDDH (Std. model)

AKEDDH (RO model)


