
Two-Pass Authenticated Key Exchange with 

Explicit Authentication and Tight Security

1Shanghai Jiao Tong University, China
2Jinan University, China

Xiangyu Liu1, Shengli Liu1, Dawu Gu1, and Jian Weng2



Authenticated Key Exchange (AKE)

 Correctness.

𝑘𝑖 = 𝑘𝑗 .

 Security.

• Indistinguishability.

the session key is pseudorandom.

• Authentication.

- Explicit authentication: detects active 
attacks during the execution of AKE.

- Implicit authentication: detects active 
attacks in the later communication.

A pass: one message sent from 𝑃𝑖 to 𝑃𝑗 (or 𝑃𝑗 to 𝑃𝑖).

𝑚1, 𝜎1

Party 𝑃𝑖 Party 𝑃𝑗

𝑘𝑖

(𝑠𝑘𝑖) (𝑠𝑘𝑗)

choose 𝑟1

choose 𝑟2

𝑘𝑗

𝑚2, 𝜎2

𝑚𝑡, 𝜎𝑡

…

choose 𝑟3

choose 𝑟𝑡

𝑚3, 𝜎3

⇓ ⇓



Tight Security
Security of a cryptographic Scheme based on a hard Problem.

Security loss factor: 𝐿 =
𝜖

𝜖′

Tight Security: constant 𝐿 = 𝑂(1)

Problem Scheme

PPT adversary 𝒜 successfully attacks Scheme
(with probability 𝜖)

PPT algorithm ℬ successfully solves Problem
(with probability 𝜖′)

ℬ 𝒜
construct ℬ

Advantages:
• smaller elements
• universal key-length recommendations



Tight Security for AKE

PPT adversary 𝒜 successfully attacks AKE
(with probability 𝜖)

PPT algorithm ℬ successfully solves Problem

(with probability 𝜖′)

ℬ construct ℬ
successful attack to one target instance

Problem 𝒜

embed
User 𝑃1(ℓ protocol instances)

User 𝑃2(ℓ protocol instances)

User 𝑃𝜇(ℓ protocol instances)

...

𝝁 users

Loose Security:  loss factor at least 𝐿 = 𝑂(𝜇ℓ)
Tight Security:   constant 𝐿 = 𝑂(1)

𝜇ℓ can be as large as 𝟐𝟑𝟎~𝟐𝟓𝟎！



Related Works on Tightly Secure AKE

• [GJ18, CRYPTO]: 3-pass protocol in the RO model.

• [BHJ+15, TCC]: 3-pass protocol in the Std. model.

• [CCG+19, CRYPTO]: 2-pass protocol in the RO model (security loss 𝐿 = 𝑂(𝜇)).

• [XZM20, CT-RSA]: 2-pass protocol in the RO model.

2-pass AKE scheme with explicit authentication and tight security? 

➢ Explicit authentication

➢ Implicit authentication

Advantages of explicit authentication:

detect active attacks immediately.



Security Model for AKE [GJ18]

• 𝜇: max number of users.

• ℓ: max number of executions

per user involved.

• 𝜋𝑖
𝑠: the (simulated) 𝑠-th of user 𝑃𝑖 .

Indistinguishability:

Pr 𝑏′ = 𝑏𝑖∗
𝑠∗ =

1

2
+ negl.𝒞 simulates their communication 

via 𝒜‘s send queries

(𝜋1
1, … , 𝜋𝑖

𝑠, … , 𝜋𝜇
ℓ)

𝒜𝒞

test(𝑖, 𝑠)

𝜋𝑖
𝑠 𝜋𝑗

𝑡

...

Send(𝑖, 𝑠,𝑚𝑠𝑔)

Corrupt(𝑖)

Reveal(𝑖, 𝑠)

RegisterCorrupt(𝑖, 𝑝𝑘𝑖)

session key 𝑘𝑖
𝑠

response 𝑚𝑠𝑔’

𝑃𝑖’s long-term 𝑠𝑘𝑖

𝑘𝑖
𝑠/random key

𝑖∗, 𝑠∗, 𝑏′

independent random bit 𝑏𝑖
𝑠

(𝒜’s guess of 𝑏𝑖∗
𝑠∗ for target session (𝑖∗, 𝑠∗))



Signed Diffie-Hellman Protocol

𝑔𝑎 , 𝜎1

Party 𝑃𝑖 Party 𝑃𝑗

𝑘𝑖 = 𝑔𝑎𝑏

(𝑠𝑘𝑖) (𝑠𝑘𝑗)

𝑘𝑗 = 𝑔𝑎𝑏

𝑔𝑏, 𝜎2

⇓ ⇓

𝜎1 ← SIG. Sign(𝑔𝑎)

𝜎2 ← SIG. Sign(𝑔𝑎||𝑔𝑏)



Commitment Problem in Signed DH

Consider the reduction algorithm ℬ and a specific session (𝑖, 𝑠). 

• ℬ receives a DDH challenge problem (𝑔𝑥, 𝑔𝑦, 𝑔𝑧).

• If (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) is embedded into session (𝑖, 𝑠), then it cannot be revealed.

• If not, then ℬ cannot complete the reduction if 𝒜 chooses (𝑖, 𝑠) as target.

Guess the target session (from 𝜇ℓ sessions) and embed the DDH problem into it.

⟹ loose security loss 𝐿 = 𝑂(𝜇ℓ).

• To deal with the “commitment problem”, Gjøsteen and Jager [CRYPTO 2018] added an extra hash 
commitment as the first message, resulting in a 3-pass protocol with tight security in the RO model.

Hardness of tight security for signed DH.



Commitment Problem in KEM

We need to solve the commitment problem in KEM:

• provide traditional IND-security

• answer reveal queries from 𝒜

• KEM. Gen: 𝑝𝑘 = 𝑔𝑎 , 𝑠𝑘 = 𝑎

• KEM. Encap 𝑝𝑘 : 𝐾 = 𝑔𝑎𝑏, 𝐶 = 𝑔𝑏

• KEM. Decap 𝑠𝑘, 𝐶 : 𝐾′ = 𝐶𝑠𝑘

Key Encapsulation Mechanism (KEM):

Signed DH protocol is actually a KEM + SIG construction.



Our Solution: IND-mCPAreveal secure KEM

IND-mCPAreveal security: Pr 𝒜 𝑤𝑖𝑛𝑠 =
1

2
+ negl.

IND-mCPAreveal security
experiment:

𝒜𝒞

{𝑝𝑘𝑖}

Encap(𝑖)

𝐾𝛽, 𝐶

Reveal(𝑖, 𝐶′)

𝐾′

𝑖∗, 𝐶∗, 𝛽′
𝒜 𝑤𝑖𝑛𝑠 if ∃ 𝑖∗, 𝐶∗, 𝛽 ∈ CList

add (𝑖, 𝐶, 𝛽) to CList
𝛽 ← {0,1}

add (𝑖, 𝐶′) to RList

𝐹𝑜𝑟 𝑖 ∈ 𝜇 :
𝑝𝑘𝑖 , 𝑠𝑘𝑖 ← KEM. Gen

𝐾′ ← KEM. Decap(𝑠𝑘𝑖 , 𝐶′)

(𝐾0, 𝐶) ← KEM. Encap, 𝐾1 ← $

𝑠. 𝑡. 𝑖∗, 𝐶∗ ∉ RList ∧ 𝛽′ = 𝛽

(challenge ciphertexts)



Our Solution: MU-EUF-CMAcorr secure SIG

MU-EUF-CMAcorr security: Pr 𝒜 𝑤𝑖𝑛𝑠 = negl.

MU-EUF-CMAcorr security
experiment:

𝒜𝒞

{𝑣𝑘𝑖}

Sign(𝑖,𝑚)

𝜎

Corrupt(𝑖)

𝑠𝑘𝑖

𝑖∗, 𝑚∗, 𝜎∗𝒜 𝑤𝑖𝑛𝑠 if 𝑖∗ ∉ 𝑆corr ∧ (𝑚∗, ∙ ) ∉ 𝑆𝑖∗

add (𝑚, 𝜎) to 𝑆𝑖

add (𝑖, 𝐶′) to 𝑆corr

𝐹𝑜𝑟 𝑖 ∈ 𝜇 :
𝑣𝑘𝑖 , 𝑠𝑘𝑖 ← SIG. Gen

𝜎 ← SIG. Sign(𝑠𝑘𝑖 , 𝑚)

∧ SIG. Ver 𝑣𝑘𝑖∗ , 𝑚
∗, 𝜎∗ = 1



Our Construction: KEM + SIG

⚫ With a tightly IND-mCPAreveal secure KEM, the commitment problem is solved, since all 
challenge ciphertexts can be

• either served as the final target of 𝒜.
• or revealed to 𝒜.

⚫ With a tightly MU-EUF-CMAcorr secure SIG, we can also handle the corruption queries from 
the adversary.

✓ KEM:  tightly IND-mCPAreveal security ➔ indistinguishability

✓ SIG:    tightly MU-EUF-CMAcorr security ➔ explicit authentication



Our Construction: KEM + SIG

(𝑝𝑘KEM, 𝜎1)

Party 𝑃𝑖 Party 𝑃𝑗

𝑘𝑖 = 𝐾′

(𝑠𝑘𝑖) (𝑠𝑘𝑗)

𝑝𝑘KEM, 𝑠𝑘KEM ← KEM. Gen
𝜎1 ← SIG. Sign(𝑠𝑘𝑖 , 𝑝𝑘KEM)

𝑘𝑗 = 𝐾

⇓ ⇓

(𝐶, 𝜎2)

𝐾, 𝐶 ← KEM. Encap 𝑝𝑘KEM
𝜎2 ← SIG. Sign(𝑠𝑘𝑗 , 𝑝𝑘KEM||𝐶)

𝐾′ ← KEM.Decap 𝑠𝑘KEM, 𝐶

• Corrupt: SIG is secure against adaptive corruptions.

• Reveal:   KEM is secure against adaptive reveals.

• Test: KEM is IND-secure.

Against 𝓐‘s queries (attacks):



Dealing with Replay Attacks

• A stronger security model of AKE:
If a replayed message is accepted by some user, the authentication of AKE is broken.

• We add counters to identify the freshness of messages.

✓ In this way, any replayed attacks can be detected immediately in our 2-pass AKE.

Pi Pj
msg

A

Compared with multi-pass AKE, 2-pass AKE inherently open to replay attacks.

Pi Pj

If 𝑐𝑡𝑟𝑖 ≠ 𝑐𝑡𝑟𝑗: ⊥
Else: 𝑐𝑡𝑟𝑗 ≔ 𝑐𝑡𝑟𝑖

If 𝑐𝑡𝑟𝑖 ≤ 𝑐𝑡𝑟𝑗: ⊥

(𝑝𝑘KEM, 𝑐𝑡𝑟𝑖 , 𝜎1 )𝑐𝑡𝑟𝑖 + +

(𝐶, 𝑐𝑡𝑟𝑗 , 𝜎2)



Our Generic Construction

✓ Perfect Forward Security

✓ KCI Resistance (security against key-compromise impersonation attacks)

(𝑝𝑘KEM, 𝑐𝑡𝑟𝑖 , 𝜎1)

Party 𝑃𝑖 Party 𝑃𝑗

𝑘𝑖 = 𝐾′

(𝑠𝑘𝑖) (𝑠𝑘𝑗)

𝑝𝑘KEM, 𝑠𝑘KEM ← KEM. Gen
𝑐𝑡𝑟𝑖 + +

𝜎1 ← SIG. Sign(𝑠𝑘𝑖 , 𝑝𝑘KEM||𝑐𝑡𝑟𝑖)

𝑘𝑗 = 𝐾
⇓ ⇓

(𝐶, 𝑐𝑡𝑟𝑗 , 𝜎2)

check 𝑐𝑡𝑟𝑖 > 𝑐𝑡𝑟𝑗? If yes, 𝑐𝑡𝑟𝑗 ≔ 𝑐𝑡𝑟𝑖
𝐾, 𝐶 ← KEM. Encap 𝑝𝑘KEM

𝜎2 ← SIG. Sign(𝑠𝑘𝑗 , 𝑝𝑘KEM||𝑐𝑡𝑟𝑗||𝐶)

𝐾′ ← KEM.Decap 𝑠𝑘KEM, 𝐶
check 𝑐𝑡𝑟𝑖 = 𝑐𝑡𝑟𝑗?



AKE in the RO model

We obtain the first  2-pass AKE scheme with explicit authentication and tight security in the RO model.

➢ Instantiation of KEM

• The IND-mCPAreveal security is based on the twin DH assumption (the CDH assumption).

• Tight security relies on the random self-reducibility.

• Security against reveal queries relies on the decisional oracle 2𝐷𝐻.

➢ Instantiation of SIG

• SIGDDH in [GJ18] (based on the DDH assumption).

• KEM. Gen: 𝑝𝑘 = 𝑔𝑥1 , 𝑔𝑥2 , 𝑠𝑘 = 𝑥1, 𝑥2 .

• KEM. Encap 𝑝𝑘 : 𝐾 = 𝐻 𝑝𝑘, 𝐶, 𝑔𝑥1𝑦 , 𝑔𝑥2𝑦 , 𝐶 = 𝑔𝑦

• KEM. Decap 𝑥1, 𝑥2 , 𝐶 : 𝐾′ = 𝐻 𝑝𝑘, 𝐶, 𝐶𝑥1 , 𝐶𝑥2

KEMst2DH:



AKE in the Std. model

• KEMMDDH is derived from the tightly IND-mCCA secure PKE scheme by Han et al. 
[CRYPTO 2019].

• IND-mCCA implies IND-mCPAreveal with tight reduction.

➢ Instantiation of KEM

➢ Instantiation of SIG

• SIGMDDH in [BHJ+15] (based on the MDDH assumption).

We obtain the first  2-pass AKE scheme with explicit authentication and tight security in the Std. model.



Comparison

AKE
Scheme

Comp. (I) Comp. (R) Comm. (I+R) Assumption Sec. Loss #Pass Model

[GJ18] 17 17 12+11 DDH 𝑂(1) 3 RO

AKEDDH 19 18 12+11 DDH 𝑂(1) 2 RO

[BHJ+15] 22

𝑂(𝑘2)

23

𝑂(𝑘2)

11+9

2𝑘2 + 4𝑘 + 5 + (4𝑘 + 7)

1-LIN=SXDH

𝐷𝑘-MDDH

𝑂(𝜆) 3 Std.

AKEMDDH
37

𝑂(𝑘3)

22

𝑂(𝑘3)

7+8

𝑘2 + 5𝑘 + 1 + (4𝑘 + 4)

1-LIN=SXDH

𝐷𝑘-MDDH

𝑂(𝜆) 2 Std.



Conclusion

Thank you!
Questions?

tightly secure
AKE

stronger security model
(covers replay attacks)

RO:  KEMst2DH

Std.: KEMMDDH

RO:  SIGDDH

Std.: SIGMDDH

instantiations

• 2-pass
• explicit authentication
• tight security

tightly IND-mCPAreveal

KEM

tightly EUF-CMAcorr

SIG
AKEMDDH (Std. model)

AKEDDH (RO model)


