

Tightly Secure Chameleon Hash Functions in the Multi–User Setting and Their Applications

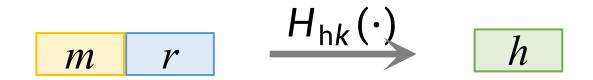
Xiangyu Liu, Shengli Liu, and Dawu Gu

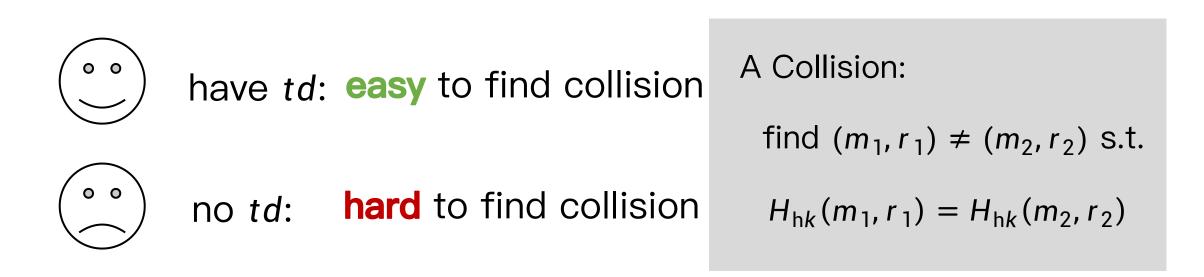
Shanghai Jiao Tong University

China

Chameleon Hash Functions (CHF)

 $(hk, td) \leftarrow KGen$





Properties of CHF

For random (hk, td) from KGen:

• Collision Resistance: hard to find (m_1, r_1, m_2, r_2) s.t.

 $m_1 \neq m_2$ and $H_{hk}(m_1, r_1) = H_{hk}(m_2, r_2)$.

- Strong Collision Resistance: hard to find (m_1, r_1, m_2, r_2) s.t. $(m_1, r_1) \neq (m_2, r_2)$ and $H_{hk}(m_1, r_1) = H_{hk}(m_2, r_2)$.
- Random Trapdoor Collision (RTC): if r_1 is chosen uniformly at random, then r_2 (the output of TdColl(·)) enjoys a uniform distribution.

Existing CHFs

- the claw-free premutation
- the factoring assumption by Shamir and Tauman
- the RSA[n,n] assumption
- the very smooth hash
- the Micali–Shamir protocol
- the Okamoto protocol
- the HS identification protocol

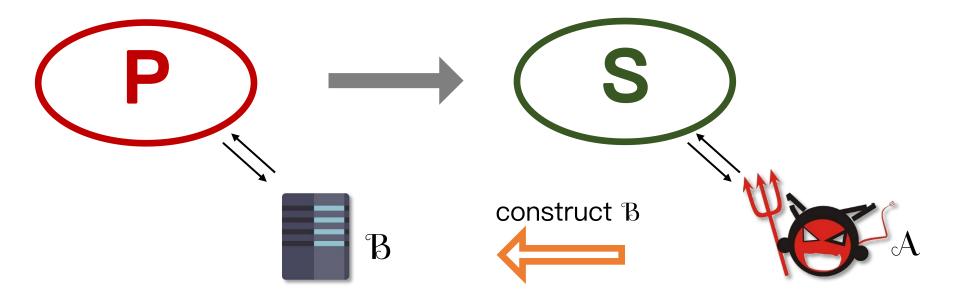
- CHF_{claw}
- CHF_{st}
- CHF_{rsa-n}
- CHF_{vsh}
- CHF_{ms}
- CHF_{oka}
- CHF_{hs}

Bellare and Ristov [BR14] proved that CHFs and Sigma protocols are equivalent.

Sigma protocols

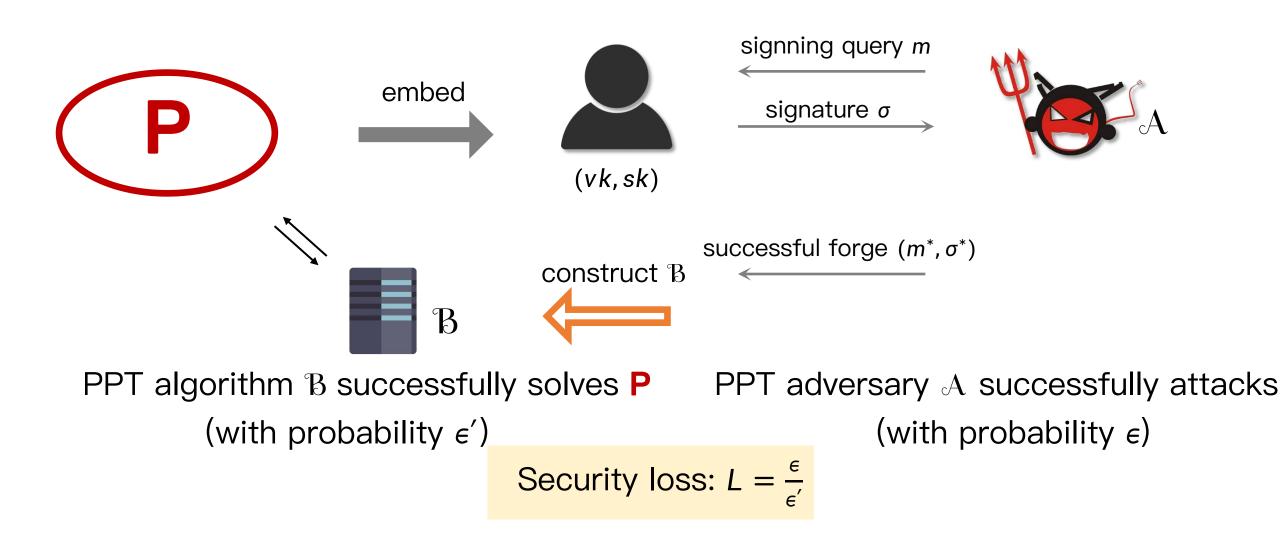
Provable Security

We construct a cryptographic scheme **S** based on the problem **P**.

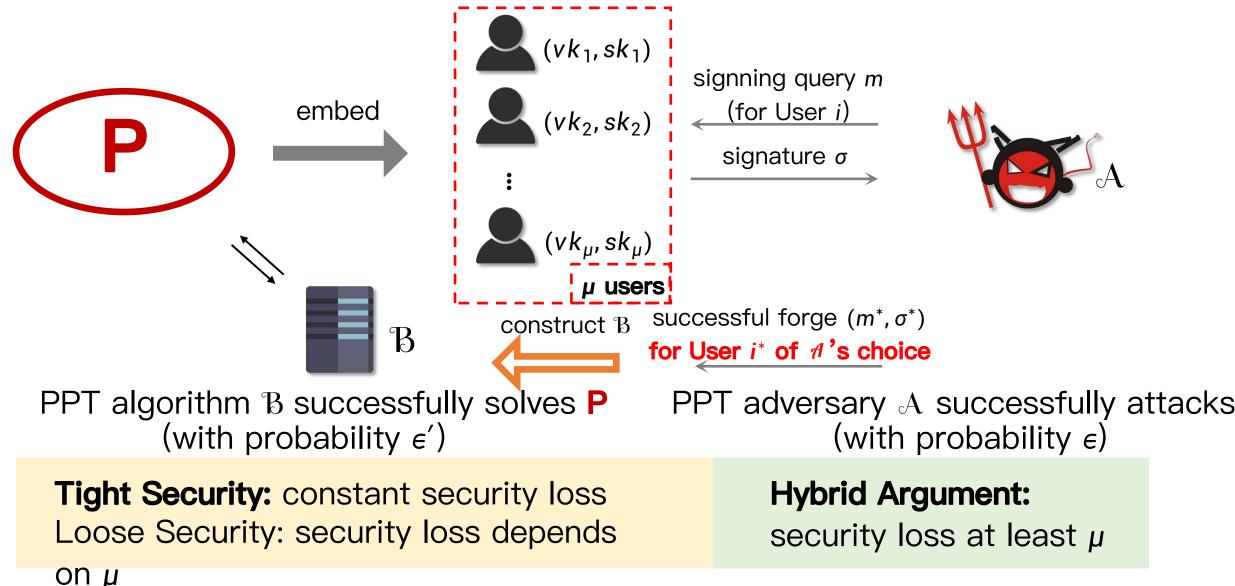


PPT algorithm B successfully solves P PPT adversary A successfully attacks (with probability ϵ') (with probability ϵ) Security loss: $L = \frac{\epsilon}{\epsilon'}$

Signature in the Single User Setting



Signature in the Multi–User Setting



Advantages of Tight Security

• μ (the total number of users) can be as large as 2^{30} !

To achieve the same security level, tightly secure schemes have:

- Smaller elements
- Lower bandwidth
- Faster computations

YES

Security of CHF in the Multi–User Setting

For μ random pairs $(hk_i, td_i)_{i \in \mu}$ from KGen:

• Multi–User Collision Resistance: hard to find $i^* \in [\mu]$ and (m_1, r_1, m_2, r_2) s.t.

 $m_1 \neq m_2$ and $H_{hk_{i^*}}(m_1, r_1) = H_{hk_{i^*}}(m_2, r_2)$.

Strong Multi–User Collision Resistance: hard to find i^{*} ∈ [μ] and (m₁, r₁, m₂, r₂) s.t.

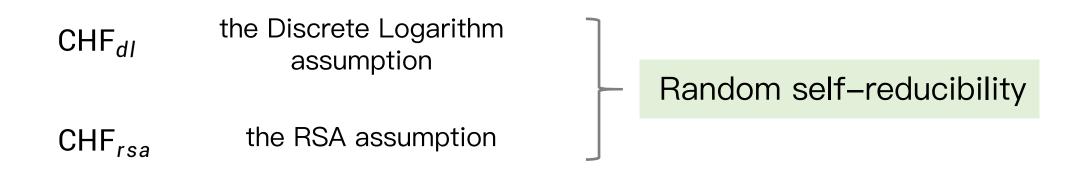
- Not all constructions achieve tight security in the multi-user setting!!

Hard to achieve tight security	the claw-free premutation	CHF _{claw}
	 the factoring assumption by Shamir and Tauman. 	CHF _{st}
	 the RSA[n,n] assumption 	CHF _{rsa-n}
	 the very smooth hash 	CHF _{vsh}
		VIII vsh

• the Micali–Shamir protocol

• CHF_{ms}

Achieving Tight Security



CHF_{f ac} the factoring assumption Embed the factoring problem instance N(=pq) into the public parameter (without knowing p and q)

Random self-reducibility: given one DL (or RSA) problem instance (g, g^x) (or (x, x^e)) one can create multiple instance (g, g^{x_i}) (or (x_i, x_i^e))

CHF_{d1}

 $\frac{\underbrace{\mathsf{Setup}(1^{\lambda}):}{(\mathbb{G}, q, g) \leftarrow} \mathsf{GGen}(1^{\lambda})}{\underset{\text{Define } \mathcal{M} := \mathbb{Z}_{q}, \mathcal{R} := \mathbb{Z}_{q}, \mathcal{Y} := \mathbb{G}}_{\text{Return } \mathsf{pp}_{\mathsf{CHF}} := (\mathbb{G}, q, g, \mathcal{M}, \mathcal{R}, \mathcal{Y})} \xrightarrow{\mathsf{Eval}(hk, m, r):}_{h := hk^{m} \cdot g^{r}}_{\text{Return } h} \\
\frac{\mathsf{KGen}(\mathsf{pp}_{\mathsf{CHF}}):}{x \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}; X := g^{x}}_{\text{Return } (hk := X, td := x)} \xrightarrow{\mathsf{TdColl}(td, m_{1}, r_{1}, m_{2}):}_{r_{2} := td \cdot (m_{1} - m_{2}) + r_{1}}_{\text{Return } r_{2}} \mod q$

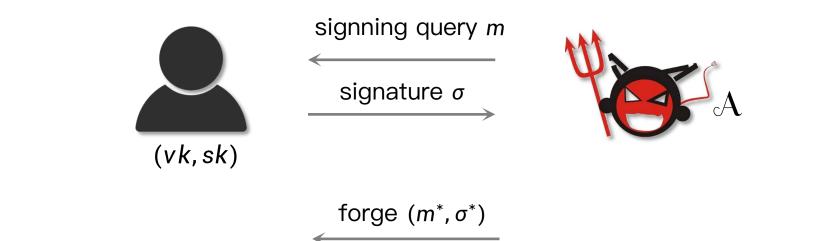
CHF_{rsa}

 $\begin{array}{|c|c|c|} \hline \underline{\mathsf{Setup}(1^{\lambda}):} \\ \hline (N,p,q,e,d) \leftarrow \mathsf{RSAGen}(1^{\lambda}) \\ \ell := L(\lambda) \\ \text{Define } \mathcal{M} := \{0,1\}^{\ell}, \mathcal{R} := \mathbb{Z}_N^*, \mathcal{Y} := \mathbb{Z}_N^* \\ \text{Return } \mathsf{pp}_{\mathsf{CHF}} := (N,e,\mathcal{M},\mathcal{R},\mathcal{Y}) \\ \hline \underline{\mathsf{KGen}(\mathsf{pp}_{\mathsf{CHF}}):} \\ x \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*; X := x^e \mod N \\ \text{Return } (hk := X, td := x) \\ \hline \end{array} \begin{array}{l} \underline{\mathsf{Eval}(hk,m,r):} \\ \overline{h} := hk^m \cdot r^e \mod N \\ \text{Return } h \\ \hline \\ \mathrm{Return } r_2 \\ \hline \end{array} \end{array}$

CHF_{fac}

Setup (1^{λ}) : Eval(hk, m, r): $(N, p, q) \leftarrow \mathsf{FacGen}(1^{\lambda})$ Parse $hk = (u_1, ..., u_\ell)$ $\ell := \operatorname{poly}(\lambda)$ $h := \prod_{k=1}^{\ell} u_k^{m_k} \cdot r^2 \mod N$ Define $\mathcal{M} := \{0,1\}^{\ell}, \, \mathcal{R} := \mathbb{Z}_N^+, \, \mathcal{Y} := \mathbb{Q}\mathbb{R}_N$ Return hReturn $pp_{CHF} := (N, \mathcal{M}, \mathcal{R}, \mathcal{Y})$ $\mathsf{TdColl}(td, m_1, r_1, m_2)$: KGen(pp_{CHF}): Parse $td = (s_1, \dots, s_\ell)$ For $k \in [\ell]$: $r_2 := \prod_{k=1}^{\ell} s_k^{m_{1,k} - m_{2,k}} \cdot r_1$ $s_k \xleftarrow{\$} \mathbb{Z}_N^*; u_k := s_k^2 \mod N$ $r_2 := \min\{r_2, N - r_2\}$ $hk := (u_1, ..., u_\ell); td := (s_1, ..., s_\ell)$ Return r_2 Return (hk, td)

Applications in Signatures



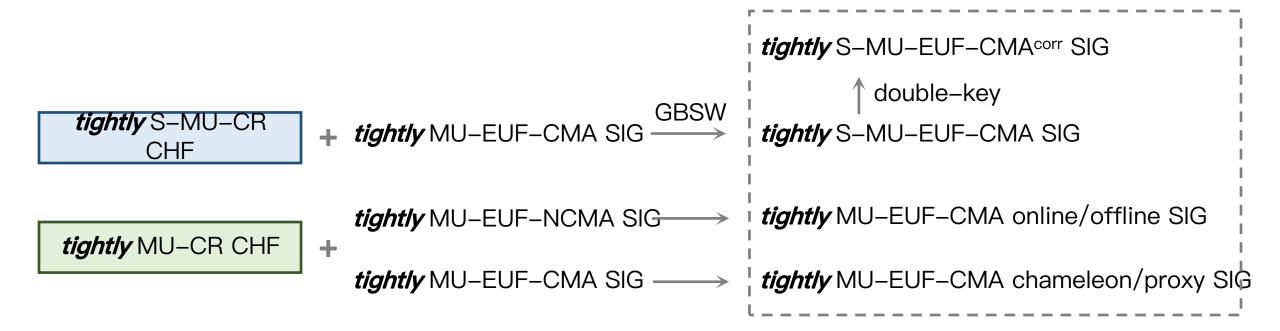
In the Single User Setting:

EUF–CMA: hard to forge a (valid) pair (m^*, σ^*) for new message m^* . S–EUF–CMA: hard to forge a new (valid) pair (m^*, σ^*) .

In the Multi–User Setting:

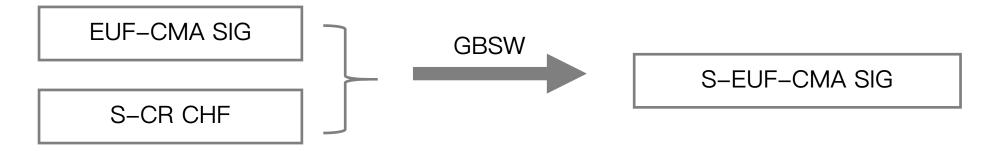
MU–EUF–CMA: hard to forge a (valid) pair (m^*, σ^*) for new message m^* under v S–MU–EUF–CMA: hard to forge a new (valid) pair (m^*, σ^*) under vk_{i^*} .

Applications in Signatures



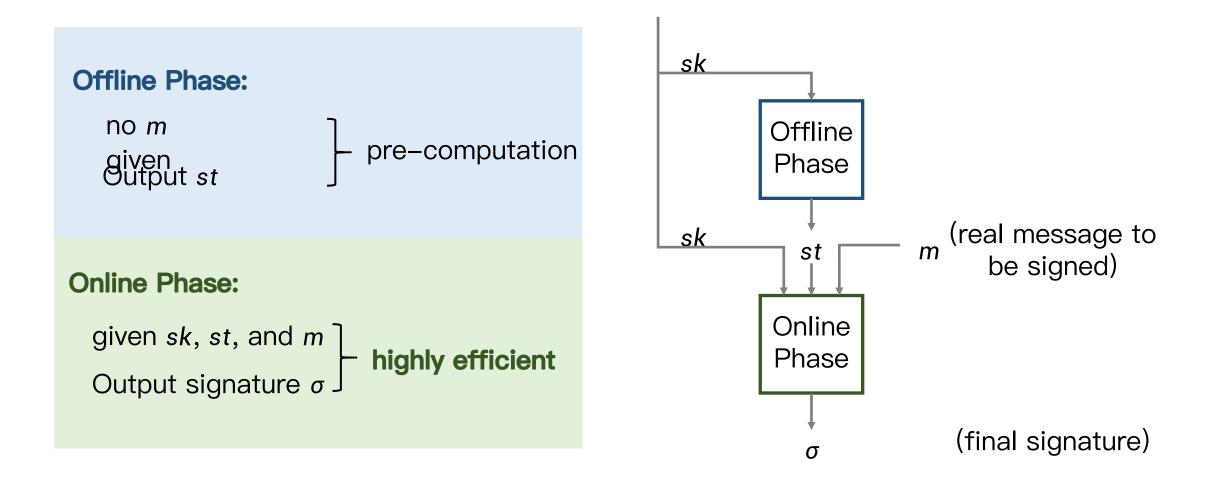
Extended GBSW Transform

GBSW Transform [SPW07]:

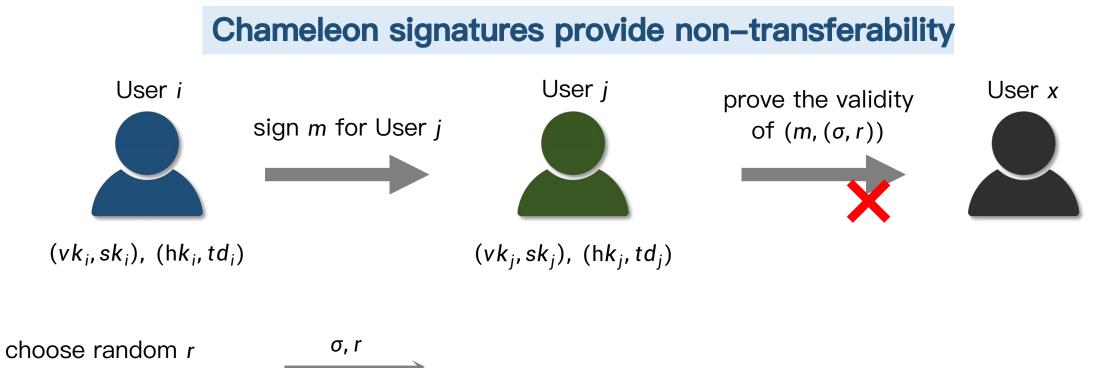


Extended GBSW Transform (using our tightly secure S–MU–CR CHF):

Online/Offline Signatures



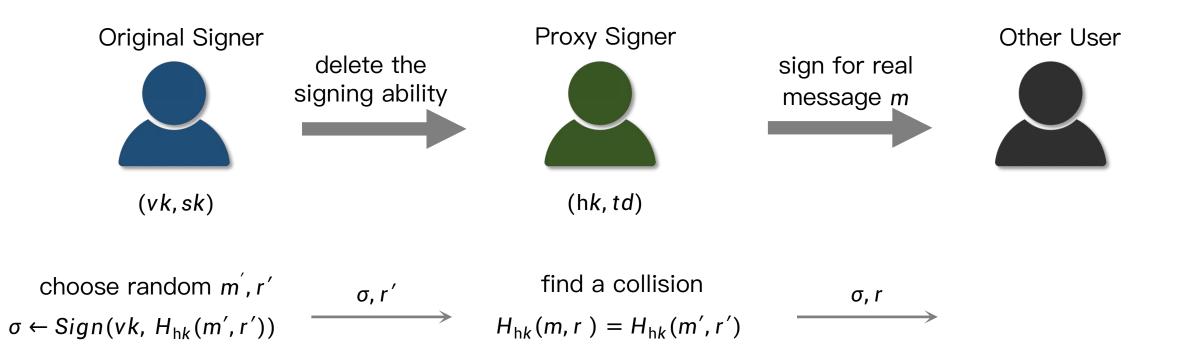
Chameleon Signatures



 $\sigma \leftarrow \operatorname{Sign}(vk_i, H_{hk_i}(m, r))$

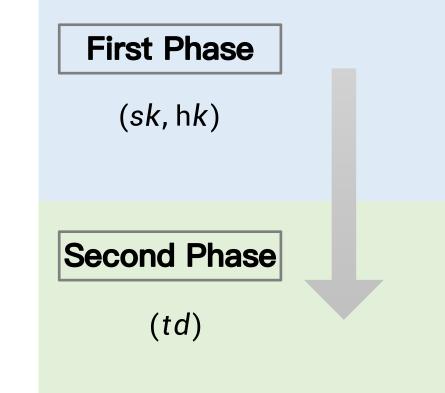
It is hard for User j to convince a third party the validity of $(m, (\sigma, r))$.

Proxy Signatures



Hash-and-Sign Paradigm

 $(vk, sk) \leftarrow SIG. KGen$ $(hk, td) \leftarrow CHF. KGen$



sign for $H_{hk}(m', r')$

Output (σ, m', r')

(*m*['], *r*['] are chosen randomly)

given the real message *m* to be signed find a collision by TdColl

Output signature (σ, r)

Conclusion

- Security notion of (strong) collision resistance for CHFs
- Present three constructions, CHF_{dl} , CHF_{rsa} , CHF_{fac} , and prove their S–MU–CR security
- Extended GBSW transform
- Further applications in signatures

Thank you!

Questions?