~——

Tightly Secure Chameleon Hash Functions™in
the Multi-User Setting and Their
Applications

Xiangyu Liu, Shengli Liu, and Dawu Gu

Shanghai Jiao Tong University
China

Chameleon Hash Functions (CHF)

(hk, td) < KGen

T Hhk('g ;

have td: to find collision ollision:

find (m1,r1) == (m2,r2) S.t.

NoO td hard tO flﬂd CO”ISIOH Hhk(m1, r1) = Hhk(mz, r2)

Properties of CHF

For random (hk, td) from KGen:
hard to find (m4,rqy, my,ry) S.1.
and Hy (my, ry) = Hy(my, ry).
« Strong Collision Resistance: hard to find (m, ry, m,, ry) s.t.
(mq,rq) # (my,ry) and Hy(my, rq) = Hp(my, ry).
- Random Trapdoor Collision (RTC): if r, is chosen uniformly

at random, then r, (the output of TdColl(-)) enjoys a uniform
distribution.

Existing CHFs

* the claw-free premutation * CHF, ..,
* the factoring assumption by Shamir and * CHF,,
Tauman >
: * CHF,.,_,
 the RSA[Nn,n] assumption
» the very smooth hash * CHFysp
: -+ the Micali—Shamir protocol e CHF,
Slgma | |, e Okamoto protocol
orotocols the Okamoto protoco * CHF,,,
_ « the HS identification protocol
¢ CHFhS

Bellare and Ristov [BR14] proved that CHFs and Sigma protocols are equivalent.

Provable Security

We construct a cryptographic scheme S based on the problem P.

ﬂ
N N

construct B
B A

PPT algorithm B successfully solves P PPT adversary A successfully attacks

(with probability €') (with probability €)
Security loss: L = =

€

Signature Iin the Single User Setting

signning query m
embed . o ﬂ
I - signature o~ A

(vk, sk)

‘\\‘ successful forge (m*, o)

construct B <
E CB

PPT algorithm B successfully solves P PPT adversary A successfully attacks

(with probability €’) (with probability €)
Security loss: L = =

€

Signature in the Multi-User Setting

signning query m

. (for User i)
signature o
> A
|

embed

AN

construct B successful forge (m*, o%)
b for User i" of ’s choice
PPT algorithm B successfully solves P PPT adversary A successfully attacks
(with probability €’) (with probability €)
Tight Security: constant security loss Hybrid Argument:
Loose Security: security loss depends security loss at least p

on u

Advantages of Tight Security

u (the total number of users) can be as large as 23°!

To achieve the same security level, tightly secure schemes have:

¢ Smaller elements /

e Lower bandwidth y[8

o Faster computations

L

Security of CHF in the Multi—-User

Setting

For y random pairs (hk;, td;)e, from KGen:
e Multi-User Collision Resistance: hard to find i* € [y] and (mq,rq, my, ry) S.t.

my # my and Hyy..(my, rq) = Hpg. (Mo, r2).

e Strong Multi-User Collision Resistance: hard to find i* € [u] and (mq,ri, ms, ro)

S.1.

— NVl eonsTrudabd

fis achieve tight secifity irf'tHé multi-user setting!!

Hard to achieve
tight security

the claw-free premutation * CHF,,,
the factoring assumption by Shamir and Tauman. cyf_,

the RSA[n,n] assumption e« CHF,._,

 CH FVSh
+ CHF,p

the very smooth hash
the Micali-Shamir protocol

Achieving Tight Security

CHF the Discrete Lpgarithm h
assumption
— Random self-reducibility
CHF, ., the RSA assumption
CHF¢ . the factoring assumption Embed the factoring problem instance N(= pg)into

the public parameter (without knowing p and q)

i DL (or RSA) problem inst . e
Random selfreducibility: 9'Ve" ©ne DL (or RSA) problem instance (g, g%) (or (x, x%))

one can create multiple instance (g, g*) (or (x; x;¢))

CHF,

Setup(1*):

Eval(hk, m,r):
(G,q,9) + GGen(1") hv-a:(hkmﬂ? gT"“)
Define M :=2Z4, R :=24,Y =G Return h

Return PPcHE ‘= (Ga q, 9, Ma Ra y)

TdCOH(td mi,T1 mg):
KG : ? ? ?
sn(ppCHF) ro :=1td - (m1 —me2)+ 71 mod g
x4 ZLy; X :=g° Return rs
Return (hk = X, td := 1)

CHF,,

Setup(1?):
(N, p,q,e,d) < RSAGen(1%) Eval(hk, m,r):
£ = LX) h := hk™ -r°® mod N

Define M := {0,1}¢, R := Z%, Y := Z} | Return h
Return ppeye :== (N, e, M, R, Y)
TdCoIl(td,ml,rl,mg):

KGen(ppcur): o =idT L 2 o, mod N

z & Zy; X :=2° mod N Return r;
Return (hk := X, td := x)

CHF; .

A%
Setup(17): A Eval(hk, m, 7):
(N,p,q) E—)FE‘CGen(l) Parse hk = (u1,...,us)
¢ .= poly(A ¢ m 2
h=Tl._ = d N
Define M := {0,1}¢, R :=Z1, Y := QRy Retu};[k}zl Beth R
Return ppcye := (N, M, R,))

TdColl(td, m1,71, m2):
Parse td = (s1, ..., S¢)

ro 1= Hi:l S:’fl,k_mlk P
ro ;= min{re, N —ra}
Return 7o

KGen(ppcye):
For k € [4]:

Sk Lt Zy; uk = s; mod N
bk = (Wissa:10e): 1d = (81; w5 5¢)
Return (hk,td)

Applications in Signatures

. signning query m
- signature o

(vk, sk)

forge (m*, o")

<
N

In the Single User Setting:

EUF-CMA: hard to forge a (valid) pair (m*, ¢*) for new message m*.
S-EUF-CMA: hard to forge a new (valid) pair (m*, o%).
In the Multi-User Setting:
MU-EUF-CMA: hard to forge a (valid) pair (m*, o*) for new message m* under \

S-MU-EUF-CMA: hard to forge a new (valid) pair (m*, o*) under vk-.

Applications in Signatures

tightly S—-MU-EUF—-CMAcor SIG
T double—key

- GBSW
tightly g;';"U‘CR + tightly MU-EUF—CMA SIG ——

tightly MU-EUF-NCMA SIG—— ! tightly MU-EUF-CMA online/offline SIG

|
|
|
|
|
|
tightly S—-MU—-EUF-CMA SIG |
|
|
|
|
|
|

tightly MU-CR CHF | 4

tightly MU-EUF-CMA SIG —— | tightly MU-EUF-CMA chameleon/proxy SIdB
|

Extended GBSW Transform

GBSW Transform [SPWO07]:

EUF-CMA SIG T GBSW

- —> S—-EUF-CMA SIG

S—-CR CHF

Extended GBSW Transform (using our tightly secure S-MU-CR CHF):

tightly MU-EUF-CMA
SIG extended GBSW

- tightly S-MU-EUF-CMA
_> SIG

S-MU-CR CHF

Online/Offline Signatures

Offline Phase:

NO m

ILY’tepnu’t st

Online Phase:

given sk, st, and m

Output signature o

sk

]— pre—computation

sk

Offline
Phase

l

]’ highly efficient

st

\ 4 1 A 4

Online
Phase

!

0)

(real message to
be signed)

(final signature)

Chameleon Signatures

Chameleon signatures provide non-transferability

User i User j prove the validity User x
. sign m for User | . of (m, (o, r)) .
(vki, sk;), (hk; td)) (vkj sk;j), (hkj, td;)
choose random r o,r

A 4

0 ¢« Sign(vk,-, Hhkj (m: I‘))

It is hard for User j to convince a third party the validity of (m, (o,r)).

Proxy Signatures

Original Signer

(vk, sk)

choose random m, r’ o r

delete the
. signing ability

o « Sign(vk, Hy(m', r"))

Proxy Signer

(hk, td)

find a collision

Hy(m, r) = Hy(m', r’)

sign for real
message m

A 4

Other User

Hash-and-Sign Paradigm
(vk, sk) « SIG.KGen (hk, td) « CHF.KGen

First Phase sign for Hyy(m , 1)

(sk, hk) (m, r’ are chosen randomly)

Output (o, m, r’)

Second Phase given the real message m to be signed

(td) find a collision by TdColl

Output signature (o, r)

Conclusion

» Security notion of (strong) collision resistance for CHFs

* Present three constructions, CHF,,, CHF,.,, CHF,., and prove
their S-MU-CR security

 Extended GBSW transform

* Further applications in signatures

Thank you!

Questions?

