
Tightly Secure Chameleon Hash Functions in
the Multi-User Setting and Their

Applications

Shanghai Jiao Tong University

China

Xiangyu Liu, Shengli Liu, and Dawu Gu

Chameleon Hash Functions (CHF)

have 푡�: easy to find collision

no 푡�: hard to find collision

(ℎ�, 푡�) ← KGen

find (�1, �1) ≠ (�2, �2) s.t.

A Collision:

 �ℎ�(�1, �1) = �ℎ�(�2, �2)

m r h
�ℎ�(·)

Properties of CHF

For random (ℎ�, 푡�) from KGen:

• Collision Resistance: hard to find (�1, �1, �2, �2) s.t.

 �1 ≠ �2 and �ℎ�(�1, �1) = �ℎ�(�2, �2).

• Strong Collision Resistance: hard to find (�1, �1, �2, �2) s.t.

 (�1, �1) ≠ (�2, �2) and �ℎ�(�1, �1) = �ℎ�(�2, �2).

• Random Trapdoor Collision (RTC): if �1 is chosen uniformly
at random, then �2 (the output of TdColl(·)) enjoys a uniform
distribution.

Existing CHFs

• the Micali-Shamir protocol

• the Okamoto protocol

• the HS identification protocol

• the claw-free premutation

• the factoring assumption by Shamir and
Tauman

• the RSA[n,n] assumption

• the very smooth hash

• CHF푐푙��
• CHF푠푡
• CHF�푠�−�
• CHF푣푠ℎ

• CHF�푠
• CHF표��
• CHFℎ푠

Sigma
protocols

Bellare and Ristov [BR14] proved that CHFs and Sigma protocols are equivalent.

Provable Security
We construct a cryptographic scheme S based on the problem P.

PPT adversary � successfully attacks S

(with probability �)
PPT algorithm ℬ successfully solves P

(with probability �′)

P S

ℬ �

Security loss: � = �
�′

construct ℬ

Signature in the Single User Setting

PPT adversary � successfully attacks S

(with probability �)
PPT algorithm ℬ successfully solves P

(with probability �′)

(푣�, 푠�)

�

signning query �

signature �

successful forge (�∗, �∗)
construct ℬ

embed

P

ℬ

Security loss: � = �
�′

Signature in the Multi-User Setting

Tight Security: constant security loss
Loose Security: security loss depends
on �

Hybrid Argument:
security loss at least �

PPT adversary � successfully attacks S
(with probability �)

PPT algorithm ℬ successfully solves P
(with probability �′)

P

ℬ

�

signning query �
(for User �)

signature �

construct ℬ successful forge (�∗, �∗)
for User �∗ of �’s choice

(푣�1, 푠�1)

(푣�2, 푠�2)

(푣��, 푠��)

...

embed

� users

Advantages of Tight Security

• � (the total number of users) can be as large as 230！

To achieve the same security level, tightly secure schemes have:

 Smaller elements

 Lower bandwidth

 Faster computations

Security of CHF in the Multi-User
Setting

• the claw-free premutation

• the factoring assumption by Shamir and Tauman

• the RSA[n,n] assumption

• the very smooth hash

• the Micali-Shamir protocol

• CHF푐푙��
• CHF푠푡
• CHF�푠�−�
• CHF푣푠ℎ
• CHF�푠

Hard to achieve
tight security

— Not all constructions achieve tight security in the multi-user setting!!

For � random pairs (ℎ��, 푡��)�∈� from KGen:

 Multi-User Collision Resistance: hard to find �∗ ∈ [�] and (�1, �1, �2, �2) s.t.

 �1 ≠ �2 and �ℎ��∗
(�1, �1) = �ℎ��∗

(�2, �2).
 Strong Multi-User Collision Resistance: hard to find �∗ ∈ [�] and (�1, �1, �2, �2)

s.t.
 (�1, �1) ≠ (�2, �2) and �ℎ��∗

(�1, �1) = �ℎ��∗
(�2, �2).

Achieving Tight Security

Random self-reducibility

CHF�푙

CHF�푠�

CHF푓�푐 Embed the factoring problem instance �(= 푝�)into
the public parameter (without knowing 푝 and �)

the RSA assumption

the Discrete Logarithm
assumption

the factoring assumption

given one DL (or RSA) problem instance (�, ��) (or (�, ��))

one can create multiple instance (�, ���) (or (��, ���))
Random self-reducibility:

CHF�푙

CHF�푠�

CHF푓�푐

Applications in Signatures

EUF-CMA: hard to forge a (valid) pair (�∗, �∗) for new message �∗.
S-EUF-CMA: hard to forge a new (valid) pair (�∗, �∗).

In the Multi-User Setting:

MU-EUF-CMA: hard to forge a (valid) pair (�∗, �∗) for new message �∗ under 푣��∗.
S-MU-EUF-CMA: hard to forge a new (valid) pair (�∗, �∗) under 푣��∗.

�

signning query �

signature �

forge (�∗, �∗)

In the Single User Setting:

(푣�, 푠�)

Applications in Signatures

tightly S-MU-CR
CHF

tightly MU-CR CHF
tightly MU-EUF-NCMA SIG

tightly MU-EUF-CMA SIG

tightly MU-EUF-CMA SIG tightly S-MU-EUF-CMA SIG

tightly S-MU-EUF-CMAcorr SIG

tightly MU-EUF-CMA online/offline SIG

tightly MU-EUF-CMA chameleon/proxy SIG

GBSW
double-key

+

+

Extended GBSW Transform

EUF-CMA SIG

S-CR CHF

S-EUF-CMA SIG

Extended GBSW Transform (using our tightly secure S-MU-CR CHF):

tightly MU-EUF-CMA
SIG

S-MU-CR CHF

tightly S-MU-EUF-CMA
SIG

GBSW

extended GBSW

GBSW Transform [SPW07]:

Online/Offline Signatures

Online Phase:

Output signature �

given 푠�, 푠푡, and �
highly efficient

Offline Phase:

Output 푠푡

no �
given pre-computation

푠�

Offline
Phase

푠푡

�

� (real message to
be signed)

Online
Phase

푠�

(final signature)

Chameleon Signatures
Chameleon signatures provide non-transferability

It is hard for User � to convince a third party the validity of (�, (�, �)).

(푣��, 푠��), (ℎ��, 푡��)

User �

(푣��, 푠��), (ℎ��, 푡��)

User �

sign � for User �

choose random �
� ← 푆���(푣��, �ℎ��(�, �))

�, �

User �prove the validity
of (�, (�, �))

Proxy Signatures

(푣�, 푠�)

Original Signer

(ℎ�, 푡�)

Proxy Signer
delete the

signing ability

choose random �′, �′
� ← 푆���(푣�, �ℎ�(�′, �′))

�, �′

Other User
sign for real
message �

find a collision

�ℎ�(�, �) = �ℎ�(�′, �′)
�, �

Hash-and-Sign Paradigm

First Phase

Second Phase

sign for �ℎ�(�′, �′)

given the real message � to be signed

Output signature (�, �)

(�′, �′ are chosen randomly)

find a collision by TdColl

(푠�, ℎ�)

(푡�)

Output (�,�′, �′)

(푣�, 푠�) ← SIG. KGen (ℎ�, 푡�) ← CHF. KGen

Conclusion
• Security notion of (strong) collision resistance for CHFs

• Present three constructions, CHF�푙, CHF�푠�, CHF푓�푐, and prove

their S-MU-CR security

• Extended GBSW transform

• Further applications in signatures

Thank you!

Questions?

